(12) United States Patent **Patel** #### (54) FILTER MEDIA CONSTRUCTION USING PTFE FILM AND CARBON WEB FOR HEPA EFFICIENCY AND ODOR CONTROL (75) Inventor: **Kirit Patel**, Bridgewater, NJ (US) Assignee: Donaldson Company, Inc., Minneapolis, MN (US) Subject to any disclaimer, the term of this Notice: patent is extended or adjusted under 35 U.S.C. 154(b) by 492 days. (21) Appl. No.: 13/386,252 PCT Filed: Jul. 22, 2010 (86) PCT No.: PCT/US2010/042930 § 371 (c)(1), (2), (4) Date: Jul. 31, 2012 (87) PCT Pub. No.: WO2011/011620 PCT Pub. Date: Jan. 27, 2011 #### **Prior Publication Data** (65) US 2013/0125757 A1 May 23, 2013 #### Related U.S. Application Data - (60) Provisional application No. 61/227,784, filed on Jul. 22, 2009. - (51) **Int. Cl.** B01D 53/02 (2006.01)B01D 39/16 (2006.01) U.S. Cl. (52)CPC B01D 39/16 (2013.01); B01D 39/1607 (58) Field of Classification Search CPC B01D 39/16; B01D 39/1607 See application file for complete search history. ## (45) **Date of Patent:** (10) **Patent No.:** (56) ## References Cited U.S. PATENT DOCUMENTS 2/1995 Wu 442/76 7/1998 Scanlon et al. 5,783,086 A (Continued) US 9.108.130 B2 Aug. 18, 2015 #### FOREIGN PATENT DOCUMENTS 102470304 5/2012 CNEP1236494 A1 9/2002 (Continued) #### OTHER PUBLICATIONS International Search Report and Written Opinion for PCT/US2010/ 042930, mailed Dec. 15, 2010 (10 pages). (Continued) Primary Examiner — Christopher P Jones (74) Attorney, Agent, or Firm - Pauly, DeVries Smith & Deffner LLC #### (57)ABSTRACT Disclosed herein, among other things, is an improved filter media construction that comprises multiple layers for improved odor control that can be used for vacuum cleaner air filtration cartridge applications. The filter media comprises anti-microbial ePTFE HEPA filter media to prevent mold growth. The filter media may also be used for air cleaner filtration, central air filtration for home and industrial buildings (HVAC), cleanrooms, and microelectronic devices. In an embodiment, the improved filter media construction comprises at least a PTFE layer, a bi-component layer, and a base layer. In an embodiment the PTFE layer comprises ePTFE. In an embodiment, the bi-component layer comprises non-woven polyethylene/polyethylene terephthalate (PE/PET). In yet another embodiment, the base layer comprises activated carbon. Other aspects and embodiments are provided herein. ### 20 Claims, 10 Drawing Sheets (2013.01) # **US 9,108,130 B2**Page 2 | (56) | R | eferen | ices Cited | | 0117367 A.
0211581 A. | | Stone et al | |-----------------------|---------|------------------|----------------------------------|--------------------------|--------------------------|----------------|---| | U.S. PATENT DOCUMENTS | | | | 0211361 A.
0239435 A. | | Davis et al | | | | 0.5.17 | 111111 | DOCCIVIENTS | |)247970 A | | Keleny et al 604/333 | | 6,171,37 | 5 B1 | 1/2001 | Howie | 2009/0 | 0266048 A | | | | 6,174,35 | | | Rohn et al. | 2010/0 | 0139224 A | | Lim et al 55/486 | | 6,260,23 | | | Wright et al. | 2010/0 |)269464 A. | 1 10/2010 | Mori et al. | | 6,312,50 | | | Alberts, III et al. | | | | | | 6,361,58 | | 3/2002 | Rohn et al. | | FORE | EIGN PATE | NT DOCUMENTS | | 6,395,04 | | | Emig et al. | | | | | | 6,432,18 | | | Alberts, III et al. | GB | 2 | 288749 | 11/1995 | | 6,463,62 | | | Wright et al. | GB | 2 | 359984 | 9/2001 | | 6,565,63 | | | Alberts, III et al. | GB | 2 | 2435820 | 9/2007 | | 6,569,21 | | | DeMarco | JP | | 6063608 | 3/1993 | | 6,596,04 | | | Bilek et al. | JP | | -063608 | 3/1993 | | 7,048,77 | | | Riedel et al. | JP | | 110493 | 4/2006 | | 7,094,27 | | | Schultink et al. | JP | | 301436 | 11/2007 | | 7,114,21 | | | Stephens et al. | JP | | 3279359 | 11/2008 | | 7,131,16
RE39,47 | | | Wright et al.
Salo et al. | JP | | 5500150 | 1/2013 | | 7,329,29 | | | Greene et al. | WO | | 0066247 | 11/2000 | | 7,341,61 | | | Greene et al. | WO
WO | | 2076276 | 10/2002 | | 8,753,43 | | | Dallas et al 96/154 | WO | WO-2005 | | 4/2005
9/2005 | | 2001/001513 | | | Rohn et al. | WO | WO-2005
WO-2006 | | 8/2006 | | 2001/001919 | | | Wright et al. | WO | WO-2000
WO-2007 | | 7/2007 | | 2001/004244 | | | Alberts, III et al. | WO | WO-2007
WO-2007 | | 11/2007 | | 2001/004772 | | | Scanlon | wo | WO-2007 | | 11/2007 | | 2002/013974 | | 0/2002 | | WO | WO-2007 | | 11/2007 | | 2002/015289 | | | Alberts, III et al. | WO | WO-2011 | | 1/2011 | | 2003/003740 | 5 A1 2 | 2/2003 | Wright et al. | | | | BLICATIONS | | 2003/013157 | 1 A1 ′ | 7/2003 | Demarco | | ` | OTTILICIO | BEICHTIONS | | 2004/001607 | | | Wright et al. | PCT No | otification C | oncerning T | ransmittal of International Prelimi- | | 2005/002850 | | | Riedel et al. | | | | rom International Application No. | | 2005/005579 | | | Wright et al. | • | • | • | eb. 2, 2012 (7 pages). | | 2005/007937 | | | Wadsworth et al. | | | | hinese Patent Application No. | | 2005/019369 | | | Muller et al 55/486 | | | | 0, 2013 (9 pages). | | 2005/022351 | | | Greene et al. | | | | o, 2013 (9 pages). oplication No. 2012-521788, mailed | | 2005/022352 | | | Greene et al. | | 2014 (2 page | | ppireation 100, 2012-321788, maned | | 2006/007589 | | | Andersson | | | | China Patent Application No. | | 2006/017459 | | | Greene | | | | 11, 2014 (19 pages) with English | | 2006/020723 | | | DeMarco
Riedel et al. | translati | | nanca Oct. | 11, 2014 (15 pages) with Eligibil | | 2007/004444 | | | | "Final | | " for Ch | inese Patent Application No. | | 2007/005613 | | | Stephens et al.
Fester et al. | | | | 119CNWO), mailed Apr. 23, 2015 | | 2007/020914 | | 9/2007
0/2007 | | | | glish Translat | | | 2007/022735 | | | | (ZI pag | co, with Ells | guən mansıaı | IOII. | | 2009/006543 | | | Kalayci et al 210/679 | sk _ 14. 1 | 1 | | | | 2009/009024 |) A1" 4 | 4/2009 | Olszewski 96/154 | " cited | by examin | ıer | | ^{*} cited by examiner FIG. 1 FIG. 2 FIG. 3 FIG. 4 Aug. 18, 2015 **FIG. 5** FIG. 6 **FIG.** 7 | | Ammonia concentration ppm(v) in sealed static chamber | | | | | | | |-------------------|---|----------------|-----------------|--|--|--|--| | Run Time
Hours | Natural Outgas- Dust
only (empty) | Sample sheet L | Sample Sheet LC | | | | | | 0 | 0.0 | <0.5 | <0.5 | | | | | | 2 | 0.9 | <0.5 | <0.5 | | | | | | 4 | 2.1 | <0.5 | <0.5 | | | | | | 6 | 4.2 | <0.5 | <0.5 | | | | | | 8 | 7.5 | <0.5 | <0.5 | | | | | | 10 | 9.1 | <0.5 | <0.5 | | | | | | 12 | 11.3 | <0.5 | <0.5 | | | | | | 14 | 13.0 | <0.5 | <0.5 | | | | | | 16 | 15.0 | <0.5 | <0.5 | | | | | | 18 | 16.0 | <0.5 | <0.5 | | | | | | 20 | 17.0 | <0.5 | <0.5 | | | | | | 22 | 18.0 | <0.5 | <0.5 | | | | | | 24 | 19.0 | <0.5 | <0.5 | | | | | FIG. 8A | | H2S concentration ppm(v) in sealed static chamber | | | | | | |-------------------|---|----------------|-----------------|--|--|--| | Run Time
Hours | Natural Outgas- Dust
only (empty) | Sample sheet R | Sample Sheet RC | | | | | 0 | 0.0 | <0.5 | <0.5 | | | | | 2 | 6.4 | <0.5 | <0.5 | | | | | 4 | 9.4 | <0.5 | <0.5 | | | | | 6 | 12.0 | <0.5 | <0.5 | | | | | 8 | 16.0 | <0.5 | <0.5 | | | | | 10 | 19.0 | <0.5 | <0.5 | | | | | 12 | 23.0 | <0.5 | <0.5 | | | | | 14 | 25.0 | <0.5 | <0.5 | | | | | 16 | 27.0 | <0.5 | <0.5 | | | | | 18 | 29.0 | <0.5 | <0.5 | | | | | 20 | 31.0 | <0.5 | <0.5 | | | | | 22 | 30.0 | <0.5 | <0.5 | | | | | 24 | 29.0 | <0.5 | <0.5 | | | | FIG. 8B TSI 3160 Fractional Efficiency Testing AX09-030 using Salt at 10fpm FIG. 9 1 ## FILTER MEDIA CONSTRUCTION USING PTFE FILM AND CARBON WEB FOR HEPA EFFICIENCY AND ODOR CONTROL This application is being filed as a PCT International Patent 5 application on Jul. 22, 2010, in the name of Donaldson Company, Inc., a U.S. national corporation, applicant for the designation of all countries except the U.S., and Kirit Patel, a U.S. Citizen, applicant for the designation of the U.S. only, and claims priority to U.S. Provisional Patent Application 10 Serial Number 61/227,784, filed Jul. 22, 2009, the contents of which is herein incorporated by reference. #### TECHNICAL FIELD The present invention relates generally to a layered filter media. #### BACKGROUND OF THE INVENTION Allergy sufferers and those with respiratory conditions are often sensitive to particulate materials in the air. Vacuum cleaners and air cleaner filtration devices seek to remove particulate materials in homes and places of business, requiring filters to trap these particles. Without such filters, vacuum 25 cleaners would simply re-circulate the particulate matter back into the air. Industrial dust collection equipment is required to remove greater proportions of smaller and smaller particles from process air streams due to increasingly stringent regulatory requirements. Gas turbine intake filtration systems also 30 must remove quantities of very small particles as the presence of such particles can cause irreparable damage to turbine blades. The cleanliness of an environment, the health of its occupants, the effectiveness of industrial processes, the maintenance of industrial equipment, and the overall aesthetics of 35 living require that submicron particulate materials be readily removed by filter from an air stream. In order to achieve submicron particulate removal from air streams passing through such systems, inertial separators tend to simply place a physical barrier in the path of particulate material that is then knocked from the air stream into a collection bin. Paper bag dust collectors are simply filters based on paper filter technologies in a bag form. Such paper bags typically simply fit across the air stream for the purpose of separating particulate from the air stream. Newer filters have been designed with a collection filter or a flat panel or cylindrical cartridges. In these applications, a HEPA filtering material is used. By definition, HEPA filters remove at least 99.97% of airborne particles 0.3 µm in diameter or larger. Because of their general reliability and high 50 level of performance, HEPA filters are often used to minimize the release of radioactive materials, asbestos, lead, beryllium, and other toxic particulates. In vacuum cleaners, HEPA filters are used for air pollution control. Often HEPA structures include an expanded PTFE (ePTFE), layer with a layer of a 55 melt blown fiber combined in a filter construction, or a cellulose filter paper layer with a layer of melt blown fiber combined in a filter construction. These structures are often cleaned by rapping the filter or by blowing filter cake or particulate from the filter using compressed air streams. The filtration efficiency and cleanability of newer filters is important. These filters must be able to remove dust and dirt but must be easily cleanable without damage to the filter. Often cleaning dirty filters by rapping the filter on a solid object to dislodge dust and dirt can cause the filter media to 65 fail or can cause multilayered elements to delaminate, thus causing the filter to fail through the formation of a pathway 2 for the dust and dirt through the filter structure. Another failure mode occurs when fine dust particles are trapped into the depth of the filter media, such that the dust cannot be dislodged by typical filter cleaning mechanisms, resulting in reduced vacuum power and shorter filter life. One example of a dust filter vacuum technology using a fine fiber layer in a vacuum bag is Emig et al., U.S. Pat. No. 6,395,046. One example of a filter cartridge in a wet/dry vacuum using expanded PTFE is Scanlon et al., U.S. Pat. No. 5,783,086. Filter materials, such as scrimmed HEPA media, often have high efficiency but often have short lifetimes and can be degraded through water exposure. There remains a need for a filter media construction suitable for removing odor while maintaining a lower pressure drop and higher efficiency. Additionally, there exists a need for a filter media construction that provides HEPA efficiency, odor control, and anti-microbial treatment with a single medium to control mold growth in cartridge media. ### SUMMARY OF THE INVENTION The present invention relates generally to multi-layered HEPA filter media for improved odor control and filtering. The present invention provides a multi-layered anti-microbial ePTFE HEPA filter media for improved odor control. The media is specifically designed for vacuum cleaner air filtration cartridge application, but it can also be used for a variety of other filtration systems. Such systems include but are not limited to air cleaner filtration, central air filtration for home and industrial buildings (HVAC), clean rooms, and microelectronic devices. The filter media construction typically comprises at least three layers: an upstream media layer, a bi-component polyethylene/polyethylene terephthalate (PE/PET) layer, and a base layer. In one embodiment, PTFE is used for the upstream media layer. In another embodiment, the PFTE used for the upstream media layer is expanded PTFE (ePTFE). The ePTFE film layer provides several important benefits to the filtration media, including HEPA efficiency and tap cleanability with minimal pressure drop at HEPA efficiency. In an embodiment, the bi-component layer comprises non-woven polyethylene/polyethylene terephthalate (PE/PET). In certain embodiments the base layer comprises activated carbon. This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims and their legal equivalents. ### BRIEF DESCRIPTION OF THE DRAWINGS The invention may be more completely understood in connection with the following drawings, in which: FIG. 1 is a schematic front perspective view of the filter construction in accordance with the present invention. FIG. 2 is a cross sectional view of a multi-layered filter media in accordance with an embodiment of the invention. FIG. 3 is a scanning electron microscope micrograph of the filter media shown in FIG. 2. FIG. 4 is a cross sectional view of a multi-layered filter media in accordance with an embodiment of the invention. FIG. 5 is a cross sectional view of a multi-layered filter media in accordance with an embodiment of the invention. FIG. 6 is a cross sectional view of a multi-layered filter media in accordance with an embodiment of the invention. FIG. 7 is a cross sectional view of a multi-layered filter 5 media in accordance with an embodiment of the invention. FIG. **8**A shows test results from conducting off-gassing tests where media made in accordance with the invention was challenged with ammonia FIG. **8**B shows test results from conducting off-gassing ¹⁰ tests where media made in accordance with the invention was challenged with H₂S. FIG. 9 shows the fractional efficiency for two different samples of the media used in an embodiment of the invention. While the invention is susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and will be described in detail. It should be understood, however, that the invention is not limited to the particular embodiments described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope of the invention. #### DETAILED DESCRIPTION OF THE INVENTION The market for general-purpose vacuum cleaners and for wet/dry vacuum systems has imposed increasingly high standards of performance for the vacuum cleaners and their filters over recent years. The devices are required to remove greater and greater proportions of smaller and smaller particles from streams obtained by the vacuum cleaner from often-harsh wet or dry environments in the home, garage, basement, shop, yard, and a variety of industrial environments. The increased requirements satisfy needs for improved health, reduced allergies, improved cleanability, reduced ambient particle 35 counts, and other requirements for home, shop, and industrial environments. The prior art filter media has had adequate performance in assigned roles in filtration equipment and processes. However, these media all suffer from various problems. At present, 40 filter technology provides odor control, but improved odor control is desired. Damp filters often facilitate unwanted mold and mildew growth on the filters. The mold in turn produces mold spores, which can add pollution to the air. Additionally, it is typical that filters that can achieve a desired 45 efficiency for residential or other non-industrial applications often result in a pressure drop across the filter media that is too high for the applications. The present invention provides a multi-layered anti-microbial ePTFE HEPA filter media for improved odor control. The 50 media is specifically designed for vacuum cleaner air filtration cartridge application, but it can also be used for a variety of other filtration systems. Such systems include but are not limited to air cleaner filtration, central air filtration for home and industrial buildings (HVAC), cleanrooms, and microelectronic devices. #### Filter Construction Referring to FIG. 1, the filter media construction 10 of an example embodiment comprises at least three layers: an upstream media layer 20, a bi-component (PE/PET) layer 30, 60 and a base layer 40. In use, air flow starts from the upstream media layer 20, passes through the bi-component layer 30, and exits through the base layer 40. In one embodiment, PTFE is used for the upstream media layer **20**. In a typical embodiment, the PFTE used for the 65 upstream media layer **20** is expanded PTFE (ePTFE). The ePTFE film layer provides several important benefits to the 4 filtration media, including optional HEPA efficiency and tap cleanability with minimal pressure drop at HEPA efficiency. HEPA efficiency is defined as a minimum 99.97% at 0.3 micron particles (U.S. standard). In one embodiment, the base layer **40** comprises an activated carbon layer, and the upstream media layer **20** is ePTFE. In another embodiment, the activated carbon layer comprises a minimum of 45% activated carbon. The ePTFE filtration layer is bonded using a low melt bi-component layer **30** with carbon based media under heat and pressure. FIG. 2 shows one embodiment of the present invention where the upstream media layer 20 comprises ePTFE film, the bi-component layer 30 is non-woven PE/PET, and the base layer 40 comprises activated carbon. The bi-component layer 30 may be treated with an anti-microbial substance. As shown in FIG. 2, the bi-component layer 30 may also be alternatively formed using a low melt adhesive web. Additionally, the base layer activated carbon may be treated with an anti-microbial substance. FIG. 3 shows a scanning electron microscope micrograph of the filter media shown in FIG. 2. In one embodiment, the base layer 40 comprises activated carbon and nanofiber, and the upstream media layer 20 is PTFE, as shown in FIG. 4. In one embodiment, the base layer **40** is melt-blown media with carbon particles, and the upstream media layer **20** is PTFE, as shown in FIG. **5**. In one embodiment, the base layer 40 is particle laden melt-blown nanofiber with carbon particles, and the upstream media layer 20 is PTFE, as shown in FIG. 6. In one embodiment, the base layer 40 is particle laden melt-blown material further containing carbon particles, and the upstream media layer 20 is nanofiber created by Donaldson Company, Inc. of Bloomington, Minn. This embodiment is shown in FIG. 7. In one embodiment, the nanofiber may be coated on one side. In another embodiment, the nanofiber may be coated on two sides. In the various embodiments nanofiber media may be co-pleated with other media, such as carbon loaded melt blown media. **Exemplary Materials** The present invention may be constructed with a variety of materials. HEPA filtering material is preferred as, by definition, HEPA filters remove at least 99.97% of airborne particles 0.3 µm in diameter. However, due to the construction of the filter, the starting materials used to construct the filters of the present invention need not be HEPA efficiency in order for the entire filter media construction to be HEPA efficiency. In one embodiment, polytetrafluoroethylene (PTFE) is used for the upstream media layer. Expanded PTFE (ePTFE) may also be utilized in the present invention. Typically, ePTFE media have very high pressure drops and moderate HEPA efficiency. Alternatively, as shown in FIG. 7, the upstream media layer 20 may comprise nanofiber, such as that created by Donaldson Company, Inc. of Bloomington, Minn. These nanofibers provide a low cost option with mid-range filtration efficiency. Examples of these nanofibers include some coated on one side and others coated on two sides, co-pleated or bonded with melt-blown carbon media. The melt-blown carbon media is available from a variety of commercial sources, such as Hollingsworth and Vose of East Walpole, Mass. In one embodiment, the bi-component layer 30 may comprise polyethylene/polyethylene terephthalate (PE/PET). In another embodiment, the bi-component layer 30 may comprise a low melt adhesive web. In one embodiment, the base layer **40** comprises activated carbon. In a preferred embodiment, the base layer **40** comprises a minimum of 45% activated carbon. The base layer may be produced with or without anti-microbial treatment. Alternatively, the base layer 40 comprises nanofiber with activated carbon. In this application, the nanofibers serve a multifunctional purpose: in addition to helping to capture airborne contaminants that escape ePTFE film, the nanofibers cause the overall pressure drop to be lower than if PTFE film 5 alone is used. Consequently, use of these materials does not necessitate that the starting PTFE film be HEPA efficiency. In another embodiment, the base media 40 comprises meltblown media with carbon particles. The melt-blown media with carbon particles serves dual purposes: not only does it aid control odor, it also helps to capture airborne contaminants that escape the ePTFE film layer. Furthermore, the overall pressure drop is lower than if PTFE film alone is used, so the starting PTFE film need not be HEPA efficiency. In yet another embodiment, the base media 40 comprises 15 carbon particle laden melt-blown media with nanofibers. Such a material is suitable for removing odor with lower pressure drop and higher efficiency. The starting PTFE film of this embodiment need not be HEPA efficiency. One exemplary material that may be used for the base 20 media 40 is a 2-in-1 carbon substrate developed by Lydall, Inc. of Manchester, Conn. An example of such a material is C-680 ActiPure® media developed by Lydall, Inc. of Manchester, Conn. The ActiPure® media comprises a nonwoven material and activated carbon. Interbasic Resources Inc. (IBR) performed efficiency and off-gassing tests on media, which is shown in FIGS. 8A and 8B. These tests were developed by IBR for vacuum odor control. For the off-gassing tests, the media was challenged with ammonia and H₂S. FIG. 8A shows the test results from conducting off-gassing tests where the media was challenged with ammonia in order to determine offgassing from a loaded vacuum cleaner filter under static conditions. The contaminant used in the offgassing test was 50 grams of IEC 60312 household test dust 35 PTFE is expanded PTFE. saturated with ammonia at 200 ppm(v). The tests were conducted at 70 degrees Fahrenheit with a relative humidity of 48% and barometric pressure of 736 mmHg. The media samples tested were 12"×12" flat sheet media formed into a pocket and filled with 50 grams of dust. FIG. 8B shows the test results from conducting off-gassing tests where the media was challenged with ammonia in order to determine offgassing from a loaded vacuum cleaner filter under static conditions. In these tests, the contaminant used in the off-gassing test was 50 grams of IEC 60312 household 45 test dust saturated with H₂S at 200 ppm(v). The tests were conducted at 71 degrees Fahrenheit with a relative humidity of 47% and barometric pressure of 739 mmHg. The media samples tested were 12"×12" flat sheet media formed into a pocket and filled with 50 grams of dust. Another exemplary material for use in the base media 40 shown in FIG. 9 shows the fractional efficiency of the material for two different samples of the media. Additionally, the filter media 10 may be treated in any particulates and for other purposes. For example, electrostatically treated media can be used, as can cellulose media having one or more layers of fine fiber, or other types of media known to those skilled in the art. The filter media 10 may also be treated with anti-microbial substances to prevent the growth 60 of mold on the filters. Anti-viral or anti-mycotic agents may also be used to treat the filter media 10 to reduce the populations of infectious agents. It should be noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. It should also be noted that the term "or" is gen6 erally employed in its sense including "and/or" unless the content clearly dictates otherwise. It should also be noted that, as used in this specification and the appended claims, the phrase "configured" describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration. The phrase "configured" can be used interchangeably with other similar phrases such as "arranged", "arranged and configured", "constructed and arranged", "constructed", "manufactured and arranged", and the like. All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference. This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. What is claimed is: - 1. A multi-layer filter media construction comprising: - a non-HEPA upstream media layer, - a bi-component layer, and - a bi-component layer, and - a base media layer comprising activated carbon, wherein the upstream media layer is bonded to the base media layer by the bi-component layer, and wherein the multilayer filter media construction is HEPA. - 2. The filter media construction of claim 1, the upstream media layer comprising PTFE. - 3. The filter media construction of claim 2, wherein the - 4. The filter media construction of claim 1, the bi-component layer comprising non-woven polyethylene/polyethylene terephthalate. - 5. The filter media construction of claim 1 wherein the base 40 layer comprises a minimum of 45% activated carbon. - **6**. The filter media construction of claim **1**, the base layer further comprising nanofiber. - 7. The filter media construction of claim 1, the base layer comprising carbon loaded melt-blown media. - **8**. The filter media construction of claim **1**, the base layer further comprising nanofiber. - 9. A method for making a HEPA three-layer filter media construction comprising: bonding a non-HEPA upstream media layer to a base layer using a bi-component layer under heat and pressure, wherein the base layer comprises activated carbon. - 10. The method of claim 9, the upstream media layer comprising expanded PTFE. - 11. The method construction of claim 9, the bi-component number of ways to improve its efficiency in removing minute 55 layer comprising non-woven polyethylene/polyethylene terephthalate. - 12. The method of claim 9, wherein the base layer comprises a minimum of 45% activated carbon. - 13. The method of claim 9, wherein the base layer further comprises nanofiber. - 14. The method of claim 9, the base layer comprising carbon loaded melt-blown media. - 15. The method of claim 14, the base layer further comprising nanofiber. - 16. A multi-layer filter media construction comprising: an upstream media layer, that does not meet HEPA standards, 7 - a bi-component layer, and - a base layer comprising carbon loaded nanofiber, wherein the upstream media layer is bonded to the base media layer by the bi-component layer, and wherein the multilayer filter media construction meets HEPA standards. - 17. The filter media construction of claim 16 wherein the upstream layer comprises PTFE. - 18. The filter media construction of claim 16 wherein the base layer comprises a minimum of 45% activated carbon. - 19. The filter media construction of claim 16 wherein the 10 bi-component layer comprises non-woven polyethylene/polyethylene terephthalate. - 20. The filter media construction of claim 16, wherein the filter media construction further comprises an anti-microbial treatment. * * * * * # UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION** PATENT NO. : 9,108,130 B2 APPLICATION NO. : 13/386252 DATED : August 18, 2015 INVENTOR(S) : Kirit Patel It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: In the claims Column 6, Line 27: "a bi-component layer, and" should be omitted. Signed and Sealed this Fifth Day of July, 2016 Michelle K. Lee Michelle K. Lee Director of the United States Patent and Trademark Office